Challenges and artifacts in quantitative photobleaching experiments.

نویسنده

  • Matthias Weiss
چکیده

Confocal fluorescence recovery after photobleaching (FRAP) is today the prevalent tool when studying the diffusional and kinetic properties of proteins in living cells. Obtaining quantitative data for diffusion coefficients via FRAP, however, is challenged by the fact that both bleaching and scanning take a finite time. Starting from an experimental case, it is shown by means of computer simulations that this intrinsic temporal limitation can lead to a gross underestimation of diffusion coefficients. Determining the binding kinetics of proteins to membranes with FRAP is further shown to be severely hampered by additional diffusional contributions, e.g. diffusion-limited binding. In some cases, the binding kinetics may even be masked entirely by diffusion. As current efforts to approach biological problems with biophysical models have to rely on experimentally determined model parameters, e.g. binding rates and diffusion constants, it is proposed that the accuracy in evaluating FRAP measurements can be improved by means of accompanying computer simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoswitching-Free FRAP Analysis with a Genetically Encoded Fluorescent Tag

Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring protein dynamics in live cells that has provided many important biological insights. Although FRAP presumes that the conversion of a fluorophore from a bright to a dark state is irreversible, GFP as well as other genetically encoded fluorescent proteins now in common use can also exhibit a reversi...

متن کامل

Label-free intracellular transport measured by spatial light interference microscopy.

We show that applying the Laplace operator to a speckle-free quantitative phase image reveals an unprecedented level of detail in cell structure, without the gradient artifacts associated with differential interference contrast microscopy, or photobleaching and phototoxicity limitations common in fluorescence microscopy. This method, referred to as Laplace phase microscopy, is an efficient tool...

متن کامل

Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation.

This chapter details quantitative imaging of the Mero-CBD biosensor, which reports activation of endogenous Cdc42 in living cells. The procedures described are appropriate for imaging any biosensor that uses two different fluorophores on a single molecule, including FRET biosensors. Of particular interest is an algorithm to correct for fluorophore photobleaching, useful when quantitating activi...

متن کامل

Spontaneous recovery of fluorescence by photobleached surface-adsorbed proteins.

Fluorescence photobleaching of a carboxyfluorescein-labeled protein (erythrocyte cytoskeletal protein 4.1) immobilized on bare glass is found to be spontaneously reversible, provided that the sample is deoxygenated. After a short (hundredths of seconds) photobleaching laser flash, the subsequent fluorescence excited by a dim probe beam partly recovers on a long (tenths of second) time scale, ev...

متن کامل

Quantitative Measurement of Brightness from Living Cells in the Presence of Photodepletion

The brightness of fluorescently labeled proteins provides an excellent marker for identifying protein interactions in living cells. Quantitative interpretation of brightness, however, hinges on a detailed understanding of the processes that affect the signal fluctuation of the fluorescent label. Here, we focus on the cumulative influence of photobleaching on brightness measurements in cells. Ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Traffic

دوره 5 9  شماره 

صفحات  -

تاریخ انتشار 2004